AlphaFold: a solution to a 50-year-old grand challenge in biology

Source Node: 747253

We’ve also seen signs that protein structure prediction could be useful in future pandemic response efforts, as one of many tools developed by the scientific community. Earlier this year, we predicted several protein structures of the SARS-CoV-2 virus, including ORF3a, whose structures were previously unknown. At CASP14, we predicted the structure of another coronavirus protein, ORF8. Impressively quick work by experimentalists has now confirmed the structures of both ORF3a and ORF8. Despite their challenging nature and having very few related sequences, we achieved a high degree of accuracy on both of our predictions when compared to their experimentally determined structures.

As well as accelerating understanding of known diseases, we’re excited about the potential for these techniques to explore the hundreds of millions of proteins we don’t currently have models for – a vast terrain of unknown biology. Since DNA specifies the amino acid sequences that comprise protein structures, the genomics revolution has made it possible to read protein sequences from the natural world at massive scale – with 180 million protein sequences and counting in the Universal Protein database (UniProt). In contrast, given the experimental work needed to go from sequence to structure, only around 170,000 protein structures are in the Protein Data Bank (PDB). Among the undetermined proteins may be some with new and exciting functions and – just as a telescope helps us see deeper into the unknown universe – techniques like AlphaFold may help us find them.

Unlocking new possibilities

AlphaFold is one of our most significant advances to date but, as with all scientific research, there are still many questions to answer. Not every structure we predict will be perfect. There’s still much to learn, including how multiple proteins form complexes, how they interact with DNA, RNA, or small molecules, and how we can determine the precise location of all amino acid side chains. In collaboration with others, there’s also much to learn about how best to use these scientific discoveries in the development of new medicines, ways to manage the environment, and more.

For all of us working on computational and machine learning methods in science, systems like AlphaFold demonstrate the stunning potential for AI as a tool to aid fundamental discovery. Just as 50 years ago Anfinsen laid out a challenge far beyond science’s reach at the time, there are many aspects of our universe that remain unknown. The progress announced today gives us further confidence that AI will become one of humanity’s most useful tools in expanding the frontiers of scientific knowledge, and we’re looking forward to the many years of hard work and discovery ahead!


Until we’ve published a paper on this work, please cite:

High Accuracy Protein Structure Prediction Using Deep Learning

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Kathryn Tunyasuvunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Anna Potapenko, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, Demis Hassabis.

In Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (Abstract Book), 30 November – 4 December 2020. Retrieved from here.

We’re right at the beginning of exploring how best to enable other groups to use our structure predictions, alongside preparing a peer-reviewed paper for publication. While our team won’t be able to respond to every enquiry, if AlphaFold may be relevant to your work, please submit a few lines about it to alphafold@deepmind.com. We’ll be in contact if there’s scope for further exploration. 

Source: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Time Stamp:

More from Deep Mind - Latest Post