Carbon nanotube recognition by human Siglec-14 provokes inflammation

Carbon nanotube recognition by human Siglec-14 provokes inflammation

Source Node: 2569457
  • De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  Google Scholar 

  • Huang, H., Feng, W., Chen, Y. & Shi, J. L. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).

    Article  CAS  Google Scholar 

  • Hansen, S. F. & Lennquist, A. SIN list criticism based on misunderstandings. Nat. Nanotechnol. 15, 418 (2020).

    Article  CAS  Google Scholar 

  • Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  • Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  Google Scholar 

  • Yang, W., Wang, L., Mettenbrink, E. M., DeAngelis, P. L. & Wilhelm, S. Nanoparticle toxicology. Annu. Rev. Pharmacol. Toxicol. 61, 269–289 (2021).

    Article  CAS  Google Scholar 

  • Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  • Nagai, H. et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl Acad. Sci. USA 108, E1330–E1338 (2011).

    Article  Google Scholar 

  • Donaldson, K., Murphy, F. A., Duffin, R. & Poland, C. A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5 (2010).

    Article  Google Scholar 

  • Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  Google Scholar 

  • Franklin, B. S., Mangan, M. S. & Latz, E. Crystal formation in inflammation. Annu. Rev. Immunol. 34, 173–202 (2016).

    Article  CAS  Google Scholar 

  • Palomaki, J. et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861–6870 (2011).

    Article  CAS  Google Scholar 

  • Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    Article  CAS  Google Scholar 

  • Omori, S. et al. Tim4 recognizes carbon nanotubes and mediates phagocytosis leading to granuloma formation. Cell Rep. 34, 108734 (2021).

    Article  CAS  Google Scholar 

  • Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    Article  CAS  Google Scholar 

  • Berman, H., Henrick, K., Nakamura, H. & Markley, J. L. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35, D301–D303 (2007).

    Article  CAS  Google Scholar 

  • Duan, S. & Paulson, J. C. Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol. 38, 365–395 (2020).

    Article  CAS  Google Scholar 

  • Crocker, P. R., Paulson, J. C. & Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007).

    Article  CAS  Google Scholar 

  • Hayami, T., Higo, J., Nakamura, H. & Kasahara, K. Multidimensional virtual-system coupled canonical molecular dynamics to compute free-energy landscapes of peptide multimer assembly. J. Comput. Chem. 40, 2453–2463 (2019).

    Article  CAS  Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  • Angata, T., Hingorani, R., Varki, N. M. & Varki, A. Cloning and characterization of a novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) Siglec-3-related gene clusters. J. Biol. Chem. 276, 45128–45136 (2001).

    Article  CAS  Google Scholar 

  • Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 20, 1964–1973 (2006).

    Article  CAS  Google Scholar 

  • Wilson, A. A. et al. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J. Clin. Invest. 120, 379–389 (2010).

    Article  CAS  Google Scholar 

  • Yamanaka, M., Kato, Y., Angata, T. & Narimatsu, H. Deletion polymorphism of Siglec14 and its functional implications. Glycobiology 19, 841–846 (2009).

    Article  CAS  Google Scholar 

  • Toyokuni, S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv. Drug Deliv. Rev. 65, 2098–2110 (2013).

    Article  CAS  Google Scholar 

  • D’Astolfo, D. S. et al. Efficient intracellular delivery of native proteins. Cell 161, 674–690 (2015).

    Article  Google Scholar 

  • Gonzalez-Durruthy, M., Concu, R., Ruso, J. M. & Cordeiro, M. New mechanistic insights on carbon nanotubes’ nanotoxicity using isolated submitochondrial particles, molecular docking, and nano-QSTR approaches. Biol. (Basel) 10, 171 (2021).

    CAS  Google Scholar 

  • Ge, C. et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl Acad. Sci. USA 108, 16968–16973 (2011).

    Article  CAS  Google Scholar 

  • Zhang, J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 8, 959–968 (2013).

    Article  CAS  Google Scholar 

  • Lanzarotti, E., Defelipe, L. A., Marti, M. A. & Turjanski, A. G. Aromatic clusters in protein–protein and protein–drug complexes. J. Cheminform. 12, 30 (2020).

    Article  CAS  Google Scholar 

  • Westbrook, J., Ito, N., Nakamura, H., Henrick, K. & Berman, H. M. PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21, 988–992 (2005).

    Article  CAS  Google Scholar 

  • Kinjo, A. R. et al. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Nucleic Acids Res. 45, D282–D288 (2017).

    Article  CAS  Google Scholar 

  • Fu, Q. et al. Stimuli-responsive plasmonic assemblies and their biomedical applications. Nano Today 36, 101014 (2021).

    Article  CAS  Google Scholar 

  • Jorgensen, W. L., Maxwell, D. S. & TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  • Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

  • Abraham, M. J. et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    Article  Google Scholar 

  • Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  • Nose, S. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Article  CAS  Google Scholar 

  • Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-987X%28199709%2918%3A12%3C1463%3A%3AAID-JCC4%3E3.0.CO%3B2-H” aria-label=”Article reference 41″ data-doi=”10.1002/(SICI)1096-987X(199709)18:123.0.CO;2-H”>Article  CAS  Google Scholar 

  • Daszykowski, M & Walczak, B. In Comprehensive Chemometrics (eds Brown, S. D., Tauler, R. & Walczak, B.), 635–654 (Elsevier, 2009).

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    Article  Google Scholar 

  • Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  Google Scholar 

  • Tsugita, M., Morimoto, N., Tashiro, M., Kinoshita, K. & Nakayama, M. SR-B1 Is a silica receptor that mediates canonical inflammasome activation. Cell Rep. 18, 1298–1311 (2017).

    Article  CAS  Google Scholar 

  • Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31, 1007–1014 (2003).

    Article  CAS  Google Scholar 

  • Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123 (2015).

    Article  CAS  Google Scholar 

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

  • Lam, C. W., James, J. T., McCluskey, R., Arepalli, S. & Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36, 189–217 (2006).

    Article  CAS  Google Scholar 

  • Flynn, R. et al. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood 125, 4085–4094 (2015).

    Article  CAS  Google Scholar 

  • Agarwal, K. et al. Inhibition of mucin-type O-glycosylation through metabolic processing and incorporation of N-thioglycolyl-d-galactosamine peracetate (Ac(5)GalNTGc). J. Am. Chem. Soc. 135, 14189–14197 (2013).

    Article  CAS  Google Scholar 

  • Ito, F. et al. Asbestos conceives Fe(II)-dependent mutagenic stromal milieu through ceaseless macrophage ferroptosis and β-catenin induction in mesothelium. Redox Biol. 36, 101616 (2020).

    Article  CAS  Google Scholar 

  • Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336–2347 (2013).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology