Hybrid electronic–photonic sensors on a fibre tip - Nature Nanotechnology

Hybrid electronic–photonic sensors on a fibre tip – Nature Nanotechnology

Source Node: 2753625
  • Bogue, R. Towards the trillion sensors market. Sensor Rev. 34, 137–142 (2014).

    Article  Google Scholar 

  • Alam, M., Tehranipoor, M. M. & Guin, U. TSensors vision, infrastructure and security challenges in trillion sensor era. J. Hardw. Syst. Secur. 1, 311–327 (2017).

    Article  Google Scholar 

  • Culshaw, B. Optical fiber sensor technologies: opportunities and—perhaps—pitfalls. J. Light. Technol. 22, 39–50 (2004).

    Article  Google Scholar 

  • Komma, J., Schwarz, C., Hofmann, G., Heinert, D. & Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101, 041905 (2012).

    Article  Google Scholar 

  • Courts, S. S. & Swinehart, P. R. Review of CernoxTM (zirconium oxy-nitride) thin-film resistance temperature sensors. AIP Conf. Proc. 684, 393–398 (2003).

    Article  CAS  Google Scholar 

  • Reverter, F. A tutorial on thermal sensors in the 200th anniversary of the Seebeck effect. IEEE Sens. J. 21, 22122–22132 (2021).

    Article  CAS  Google Scholar 

  • Matsuura, M. Recent advancement in power-over-fiber technologies. Photonics 8, 335 (2021).

    Article  CAS  Google Scholar 

  • Youssefi, A. et al. A cryogenic electro-optic interconnect for superconducting devices. Nat. Electron. 4, 326–332 (2021).

    Article  CAS  Google Scholar 

  • Loader, B., Alexander, M. & Osawa, R. Development of optical electric field sensors for EMC measurement. In 2014 International Symposium on Electromagnetic Compatibility, Tokyo 658–661 (IEEE, 2014).

  • Calero, V. et al. An ultra wideband-high spatial resolution-compact electric field sensor based on lab-on-fiber technology. Sci. Rep. 9, 8058 (2019).

    Article  CAS  Google Scholar 

  • Peng, J. et al. Recent progress on electromagnetic field measurement based on optical sensors. Sensors 19, 2860 (2019).

    Article  CAS  Google Scholar 

  • Zhao, C., Cai, L. & Zhao, Y. An optical fiber electric field sensor based on polarization-maintaining photonic crystal fiber selectively filled with liquid crystal. Microelectron. Eng. 250, 111639 (2021).

    Article  CAS  Google Scholar 

  • Iannuzzi, D. et al. Monolithic fiber-top sensor for critical environments and standard applications. Appl. Phys. Lett. 88, 053501 (2006).

    Article  Google Scholar 

  • Park, B. et al. Double-layer silicon photonic crystal fiber-tip temperature sensors. IEEE Photon. Technol. Lett. 26, 900–903 (2014).

    Article  CAS  Google Scholar 

  • Vaiano, P. et al. Lab on fiber technology for biological sensing applications. Laser Photon. Rev. 10, 922–961 (2016).

    Article  CAS  Google Scholar 

  • Pevec, S. & Donlagić, D. Multiparameter fiber-optic sensors: a review. Opt. Eng. 58, 072009 (2019).

    Article  CAS  Google Scholar 

  • Picelli, L. et al. Scalable wafer-to-fiber transfer method for lab-on-fiber sensing. Appl. Phys. Lett. 117, 151101 (2020).

  • Suzuki, N. & Tada, K. Electrooptic properties and Raman scattering in InP. Jpn. J. Appl. Phys. 23, 291–295 (1984).

    Article  CAS  Google Scholar 

  • Bennett, B. R., Soref, R. A. & del Alamo, J. A. Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).

    Article  CAS  Google Scholar 

  • Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (John Wiley & Sons, 2007).

  • Meiners, L. G. Temperature dependence of the dielectric constant of InP. J. Appl. Phys. 59, 1611–1613 (1986).

    Article  CAS  Google Scholar 

  • Lebedev, M. V. et al. InP(1 0 0) surface passivation with aqueous sodium sulfide solution. Appl. Surf. Sci. 533, 147484 (2020).

    Article  CAS  Google Scholar 

  • Jalil, J., Zhu, Y., Ekanayake, C. & Ruan, Y. Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28, 142002 (2017).

    Article  Google Scholar 

  • Shwarts, Y. M. et al. Silicon diode temperature sensor without a kink of the response curve in cryogenic temperature region. Sens. Actuator. A Phys. 76, 107–111 (1999).

    Article  CAS  Google Scholar 

  • Courts, S. One year stability of CernoxTM and DT-670-SD silicon diode cryogenic temperature sensors operated at 77 K. Cryogenics 107, 103050 (2020).

    Article  CAS  Google Scholar 

  • Cohen, B. G., Snow, W. B. & Tretola, A. R. GaAs p-n junction diodes for wide range thermometry. Rev. Sci. Instrum. 34, 1091–1093 (1963).

    Article  CAS  Google Scholar 

  • de Miguel-Soto, V. et al. Study of optical fiber sensors for cryogenic temperature measurements. Sensors 17, 2773 (2017).

    Article  Google Scholar 

  • Smartec. Cryogenic Sensing—Application Note https://smartec.ch/wp-content/uploads/2017/12/E-APN_CRYO_01-SMARTECV2.pdf (2017).

  • McCammon, D. Semiconductor thermistors. In Cryogenic Particle Detection (ed. Enss, C.) 35–62 (Springer, 2005).

  • Qiu, W., Ndao, A., Lu, H., Bernal, M.-P. & Baida, F. I. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Opt. Express 24, 20196–20209 (2016).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology