Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food

Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food

Source Node: 1895758
    • Geyer R.
    • et al.

    Production, use, and fate of all plastics ever made.

    Sci. Adv. 2017; 3: E1700782

  • State of Plastics Waste in Asia and the Pacific – Issues, Challenges and Circular Economic Opportunities.

    United Nations Centre For Regional Development, 2020

    • World Health Organization

    The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns.

    World Food Programme, 2019

    • Zhang X.
    • Cai X.

    Climate change impacts on global agricultural land availability.

    Environ. Res. Lett. 2011; 6014014

    • Wheeler T.
    • von Braun J.

    Climate change impacts on global food security.

    Science. 2013; 341: 508-513

    • Lall U.
    • et al.

    A snapshot of the world’s groundwater challenges.

    Annu. Rev. Environ. Resour. 2020; 45: 171-194

    • Denkenberger D.
    • Pearce J.

    Feeding Everyone No Matter What: Managing Food Security After Global Catastrophe.

    Academic Press, 2014

    • Denkenberger D.C.
    • Pearce J.M.

    Feeding everyone: solving the food crisis in event of global catastrophes that kill crops or obscure the sun.

    Futures. 2015; 72: 57-68

    • Ru J.
    • et al.

    Microbial degradation and valorization of plastic wastes.

    Front. Microbiol. 2020; 11: 442

    • Mohanan N.
    • et al.

    Microbial and enzymatic degradation of synthetic plastics.

    Front. Microbiol. 2020; 11580709

    • Awaja F.
    • Pavel D.

    Recycling of PET.

    Eur. Polym. J. 2005; 41: 1453-1477

    • Wei R.
    • et al.

    Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures.

    Adv. Sci. 2019; 619004916

    • Singh N.
    • et al.

    Recycling of plastic solid waste: a state of art review and future applications.

    Compos. Part B Eng. 2017; 115: 409-422

    • Webb H.
    • et al.

    Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate).

    Polymers. 2012; 5: 1-18

  • Polymer science and technology of plastics and rubbers.

    J. Polym. Sci. A Polym. Chem. 1990; 30: 955-956

    • Bovey F.A.
    • Winslow F.H.

    Macromolecules: an Introduction to Polymer Science.

    Elsevier, 2012

    • Dogu O.
    • et al.

    The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions.

    Prog. Energy Combust. Sci. 2021; 84100901

    • Cruz Sanchez F.A.
    • et al.

    Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy.

    J. Clean. Prod. 2020; 264121602

    • Chaudhari U.S.
    • et al.

    Systems analysis approach to polyethylene terephthalate and olefin plastics supply chains in the circular economy: a review of data sets and models.

    ACS Sustain. Chem. Eng. 2021; 9: 7403-7421

    • Ashworth D.C.
    • et al.

    Waste incineration and adverse birth and neonatal outcomes: a systematic review.

    Environ. Int. 2014; 69: 120-132

    • Verma A.
    • et al.

    Prevention of poly(vinyl chloride) degradation through organic terephthalamides generated from poly(ethylene terephthalate) waste.

    J. Appl. Polym. Sci. 2019; 136: 48022

    • Orr I.
    • et al.

    Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber.

    Appl. Microbiol. Biotechnol. 2004; 65: 97-104

    • Restrepo-Flórez J.-M.
    • et al.

    Microbial degradation and deterioration of polyethylene – a review.

    Int. Biodeterior. Biodegradation. 2014; 88: 83-90

    • Peng R.
    • et al.

    Microbial degradation of polyurethane plastics.

    Chin. J. Biotechnol. 2018; 34 : 1398-1409

    • Delacuvellerie A.
    • et al.

    The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation.

    J. Hazard. Mater. 2019; 380120899

    • Wainaina S.
    • et al.

    Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies.

    Bioresour. Technol. 2020; 301122778

    • Tiquia-Arashiro S.M.

    Thermophilic fungi in composts: their role in composting and industrial processes.

    in: Tiquia-Arashiro S.M. Grube M. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer International Publishing, 2019: 587-605

    • Wierckx N.
    • et al.

    Plastic waste as a novel substrate for industrial biotechnology.

    Microb. Biotechnol. 2015; 8: 900-903

    • Cregut M.
    • et al.

    New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.

    Biotechnol. Adv. 2013; 31: 1634-1647

    • Ho B.T.
    • et al.

    An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach.

    Crit. Rev. Biotechnol. 2018; 38: 308-320

    • Roberts C.
    • et al.

    Environmental consortium containing Pseudomonas and Bacillus species synergistically degrades polyethylene terephthalate plastic.

    mSphere. 2020; 5 ()

    • Chen Z.
    • et al.

    Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase.

    Sci. Total Environ. 2020; 709136138

    • Sarmah P.
    • Rout J.

    Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water.

    Environ. Sci. Pollut. Res. 2018; 25: 33508-33520

    • Ali S.S.
    • et al.

    Plastic wastes biodegradation: mechanisms, challenges and future prospects.

    Sci. Total Environ. 2021; 780146590

    • Tribedi P.
    • Sil A.

    Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm.

    Environ. Sci. Pollut. Res. 2013; 20: 4146-4153

    • Erickson E.
    • et al.

    Comparative performance of PETase as a function of reaction conditions, substrate properties, and product accumulation.

    ChemSusChem. 2022; 15e202101932

    • Chamas A.
    • et al.

    Degradation rates of plastics in the environment.

    ACS Sustain. Chem. Eng. 2020; 8: 3494-3511

    • Albertsson A.-C.
    • Karlsson S.

    The three stages in degradation of polymers – polyethylene as a model substance.

    J. Appl. Polym. Sci. 1988; 35: 1289-1302

    • Latorre I.
    • et al.

    Isolation and molecular identification of landfill bacteria capable of growing on di-(2-ethylhexyl) phthalate and deteriorating PVC materials.

    J. Environ. Sci. Health A. 2012; 47: 2254-2262

    • Jain K.
    • et al.

    Degradation of polypropylene-poly-L-lactide blend by bacteria isolated from compost.

    Bioremediation J. 2018; 22: 73-90

    • Gambarini V.
    • et al.

    Phylogenetic distribution of plastic-degrading microorganisms.

    mSystems. 2021; 6: e01112-e01120

    • Parab Y.S.
    • Shukla S.R.

    Novel synthesis, characterization of N1,N1,N4,N4-tetrakis (2-hydroxyethyl) terephthalamide (THETA) and terephthalic acid (TPA) by depolymerization of PET bottle waste using diethanolamine.

    J. Macromol. Sci. A. 2013; 50: 1149-1156

    • Gong J.
    • et al.

    Depolymerization and assimilation of poly (ethylene terephthalate) by whole-cell bioprocess.

    IOP conference series. Mater. Sci. Eng.vol. 394. 2018: 22047 ()

    • Huang X.
    • et al.

    Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide.

    J. Agric. Food Chem. 2018; 66: 13217-13227

    • Willems A.

    The family Comamonadaceae.

    in: Rosenberg E. The Prokaryotes. Springer, Berlin Heidelberg2014: 777-851

    • Knott B.C.
    • et al.

    Characterization and engineering of a two-enzyme system for plastics depolymerization.

    Proc. Natl. Acad. Sci. 2020; 117: 25476-25485

    • Kumar R.
    • et al.

    Landfill microbiome harbour plastic degrading genes: a metagenomic study of solid waste dumping site of Gujarat, India.

    Sci. Total Environ. 2021; 779146184

    • Billig S.
    • et al.

    Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3.

    Appl. Microbiol. Biotechnol. 2010; 87: 1753-1764

    • Tournier V.
    • et al.

    An engineered PET depolymerase to break down and recycle plastic bottles.

    Nature. 2020; 580: 216-219

    • Xi X.
    • et al.

    Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene terephthalate hydrolase from bacterium HR29.

    Enzym. Microb. Technol. 2021; 143109715

    • Yoshida S.
    • et al.

    Ideonella sakaiensis, PETase, and MHETase: from identification of microbial PET degradation to enzyme characterization.

    Methods Enzymol. 2021; 648: 187-205

    • Austin S.
    • et al.

    Metabolism of multiple aromatic compounds in corn stover hydrolysate by Rhodopseudomonas palustris.

    Environ. Sci. Technol. 2015; 49: 8914-8922

    • Barth M.
    • et al.

    A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films.

    Biotechnol. J. 2016; 11: 1082-1087

    • Palm G.
    • et al.

    Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate.

    Nat. Commun. 2019; 10: 1717

    • Eubeler J.P.
    • et al.

    Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups.

    Trends Anal. Chem. 2010; 29: 84-100

    • Liu J.
    • et al.

    Biodegradation of diethyl terephthalate and polyethylene terephthalate by a novel identified degrader Delftia sp. WL-3 and its proposed metabolic pathway.

    Lett. Appl. Microbiol. 2018; 67: 254-261

    • Yoshida S.
    • et al.

    A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science. 2016; 351: 1196-1199

    • Thomsen T.B.
    • et al.

    Influence of substrate crystallinity and glass transition temperature on enzymatic degradation of polyethylene terephthalate (PET).

    New Biotechnol. 2022; 69: 28-35

    • Erkus O.
    • et al.

    Multifactorial diversity sustains microbial community stability.

    ISME J. 2013; 7: 2126-2136

    • Lefèvre C.
    • et al.

    Comparative degradation by micro-organisms of terephthalic acid, 2,6-naphthalene dicarboxylic acid, their esters and polyesters.

    Polym. Degrad. Stab. 1999; 64: 9-16

    • Perkins S.D.
    • et al.

    Comparative 16S rRNA gene surveys of granular sludge from three upflow anaerobic bioreactors treating purified terephthalic acid (PTA) wastewater.

    Water Sci. Technol. 2011; 64: 1406-1412

    • Kamimura N.
    • et al.

    Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene.

    Appl. Environ. Microbiol. 2010; 76: 8093-8101

    • Sasoh M.
    • et al.

    Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.

    Appl. Environ. Microbiol. 2006; 72: 1825

    • Hara H.
    • et al.

    The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6.

    J. Bacteriol. 2000; 182: 6950-6957

    • Lubbers R.J.M.
    • et al.

    Discovery of novel p-hydroxybenzoate-m-hydroxylase, protocatechuate 3,4 ring-cleavage dioxygenase, and hydroxyquinol 1,2 ring-cleavage dioxygenase from the filamentous fungus Aspergillus niger.

    ACS Sustain. Chem. Eng. 2019; 7: 19081-19089

    • Choi K.Y.
    • et al.

    Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17.

    FEMS Microbiol. Lett. 2005; 252: 207-213

    • Zenda K.
    • Funazukuri T.

    Depolymerization of poly(ethylene terephthalate) in dilute aqueous ammonia solution under hydrothermal conditions.

    J. Chem. Technol. Biotechnol. 2008; 83: 1381-1386

    • Paszun D.
    • Spychaj T.

    Chemical recycling of poly(ethylene terephthalate).

    Ind. Eng. Chem. Res. 1997; 36: 1373-1383

    • Singh A.
    • et al.

    Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate).

    Joule. 2021; 5: 2479-2503

    • Xie H.G.
    • et al.

    Isolation and characterization of the tellurite-reducing photosynthetic bacterium, Rhodopseudomonas palustris strain TX618.

    Water Air Soil Pollut. 2018; 229: 1-10

    • Dangi A.K.
    • et al.

    Bioremediation through microbes: systems biology and metabolic engineering approach.

    Crit. Rev. Biotechnol. 2019; 39: 79-98

    • Qi M.
    • et al.

    Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes.

    Environ. Sci. Technol. 2021; 55: 3270-3282

    • Wanapaisan P.
    • et al.

    Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium.

    J. Hazard. Mater. 2018; 342: 561-570

    • Meyer-Cifuentes I.
    • et al.

    Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium.

    Nat. Commun. 2020; 11: 5790

    • Boland M.J.
    • et al.

    The future supply of animal-derived protein for human consumption.

    Trends Food Sci. Technol. 2013; 29: 62-73

    • Anupama
    • Ravindra P.

    Value-added food: single cell protein.

    Biotechnol. Adv. 2000; 18: 459-479

    • Bratosin B.C.
    • et al.

    Single cell protein: a potential substitute in human and animal nutrition.

    Sustainability. 2021; 13: 9284

    • Matassa S.
    • et al.

    Microbial protein: future sustainable food supply route with low environmental footprint.

    Microb. Biotechnol. 2016; 9: 568-575

    • Choi K.R.
    • et al.

    Microbial food: microorganisms repurposed for our food.

    Microb. Biotechnol. 2022; 15: 18-25

    • Michalk D.L.
    • et al.

    Sustainability and future food security – a global perspective for livestock production.

    Land Degrad. Dev. 2019; 30: 561-573

    • Ritala A.
    • et al.

    Single cell protein-state-of-the-art, industrial landscape and patents 2001–2016.

    Front. Microbiol. 2017; 8: 2009

    • Blomqvist J.
    • et al.

    Oleaginous yeast as a component in fish feed.

    Sci. Rep. 2018; 8: 15945

    • Meyer T.K.
    • et al.

    U.S. potential of sustainable backyard distributed animal and plant protein production during and after pandemics.

    Sustainability. 2021; 13: 5067

    • Strong P.J.
    • et al.

    Methane as a resource: can the methanotrophs add value?.

    Environ. Sci. Technol. 2015; 49: 4001-4018

  • Fungal protein for food.

    in: Dijksterhuis J. Samson R.A. Food Mycology: A Multifaceted Approach to Fungi and Food. CRC Press, 2007: 353-360

    • Draaisma R.B.
    • et al.

    Food commodities from microalgae.

    Curr. Opin. Biotechnol. 2013; 24: 169-177

    • Erdman M.D.
    • et al.

    Amino acid profiles and presumptive nutritional assessment of single-cell protein from certain lactobacilli.

    Appl. Environ. Microbiol. 1977; 33: 901-905

    • Sousa I.
    • et al.

    Microalgae in novel food products. Algae: nutrition, pollution control and energy sources.

    in: Papadopoulos K.N. Food Chemistry Research Developments. Nova Science Publishers, Inc, 2008

  • Large-scale cultivation of Euglena.

    Euglena Biochem. Cell. Mol. Biol. 2017; 979: 285-293

    • Wiebe M.G.

    QuornTM myco-protein – overview of a successful fungal product.

    Mycologist. 2004; 18: 17-20

    • Øverland M.
    • et al.

    Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals.

    Arch. Anim. Nutr. 2010; 64: 171-189

  • Myco-protein from Fusarium venenatum: a well-established product for human consumption.

    Appl. Microbiol. Biotechnol. 2002; 58: 421-427

    • Nasseri A.T.
    • et al.

    Single cell protein: production and process.

    Am. J. Food Technol. 2011; 6: 103-116

    • Pearce J.M.
    • et al.

    Preliminary automated determination of edibility of alternative foods: non-targeted screening for toxins in red maple leaf concentrate.

    Plants. 2019; 8: 110

    • Matassa S.
    • et al.

    Can direct conversion of used nitrogen to new feed and protein help feed the world?.

    Environ. Sci. Technol. 2015; 49: 5247-5254

    • Westlake R.

    Large-scale continuous production of single cell protein.

    Chem. Ingenieur Tech. 1986; 58: 934-937

    • Byrne E.
    • et al.

    Pyrolysis-aided microbial biodegradation of high-density polyethylene plastic by environmental inocula enrichment cultures.

    ACS Sustain. Chem. Eng. 2022; 10: 2022-2033

    • Kulas D.G.
    • et al.

    Micropyrolysis of polyethylene and polypropylene prior to bioconversion: the effect of reactor temperature and vapor residence time on product distribution.

    ACS Sustain. Chem. Eng. 2021; 9: 14443-14450

    • Zolghadr A.
    • et al.

    Study of the viscosity and thermal characteristics of polyolefins/solvent mixtures: applications for plastic pyrolysis.

    ACS Omega. 2021; 6: 32832-32840

    • Oenema O.
    • Tamminga S.

    Nitrogen in global animal production and management options for improving nitrogen use efficiency.

    Sci. China C Life Sci. Chin. Acad. Sci. 2005; 48: 871-887

    • Krajewski V.
    • et al.

    Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.

    Appl. Environ. Microbiol. 2010; 76: 4369-4376

    • Basile A.
    • et al.

    Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis.

    Metab. Eng. 2020; 62: 138-149

    • Martínez J.B.G.
    • et al.

    Potential of microbial protein from hydrogen for preventing mass starvation in catastrophic scenarios.

    Sustain. Prod. Consum. 2021; 25: 234-247

    • Breuer S.W.
    • et al.

    Open source software toolchain for automated non-targeted screening for toxins in alternative foods.

    MethodsX. 2021; 8101551

    • Sandner G.
    • et al.

    Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition.

    Crit. Rev. Food Sci. Nutr. 2021; ()

  • The C. elegans model in toxicity testing.

    J. Appl. Toxicol. 2017; 37: 50-59

    • Merrild H.
    • et al.

    Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances.

    Waste Manag. 2012; 32: 1009-1018

    • Geyer B.
    • et al.

    Recycling of poly(ethylene terephthalate) – a review focusing on chemical methods.

    Express Polym Lett. 2016; 10: 559-586

    • Tiso T.
    • et al.

    Towards bio-upcycling of polyethylene terephthalate.

    Metab. Eng. 2021; 66: 167-178

    • Percival D.F.

    Analysis of polyester resins by gas chromatography.

    Anal. Chem. 1963; 35: 236-238

    • Gubbels E.
    • et al.

    Polyesters.

    in: Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley, 2018: 1-30

  • Mandoki, J.W. Invista North America LLC. Depolymerization of condensation polymers, US4605762A

    • Brown B.S.
    • et al.

    Chemical and biological degradation of waste plastics.

    Nature. 1974; 250: 161

    • Kao C.-Y.
    • et al.

    Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis.

    J. Appl. Polym. Sci. 1998; 70: 1939-1945

    • Chen J.-W.
    • et al.

    Kinetics of glycolysis of polyethylene terephthalate with zinc catalyst.

    Polym. Int. 1999; 48: 885-888

    • Shah T.H.
    • et al.

    Aspects of the chemistry of poly(ethylene terephthalate): 5. Polymerization of bis(hydroxyethyl)terephthalate by various metallic catalysts.

    Polymer. 1984; 25: 1333-1336

  • Blackmon, K.P. et al., SABIC Global Technologies BV. Process for converting pet scrap to diamine monomers, US4973746A

    • West T.O.
    • et al.

    The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States.

    Biogeochemistry. 2009; 94: 29-41

    • Kenny S.T.
    • et al.

    Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).

    Environ. Sci. Technol. 2008; 42: 7696-7701

    • Tiso T.
    • et al.

    Towards bio-upcycling of polyethylene terephthalate.

    Metab. Eng. 2021; 66: 167-178

    • Guzik M.
    • et al.

    Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate.

    Appl. Microbiol. Biotechnol. 2014; 98: 4223-4232

    • Werner A.Z.
    • et al.

    Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440.

    Metab. Eng. 2021; 67: 250-261

    • Kang M.J.
    • et al.

    A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste.

    Green Chem. 2020; 22: 3461-3469

    • Tiso T.
    • et al.

    The metabolic potential of plastics as biotechnological carbon sources – review and targets for the future.

    Metab. Eng. 2022; 71: 77-98

    • Nicholson C.A.
    • Fathepure B.Z.

    Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.

    Appl. Environ. Microbiol. 2004; 70: 1222-1225

  • Time Stamp:

    More from Biotechnology Trends