Reconfigurable, non-volatile neuromorphic photovoltaics - Nature Nanotechnology

Reconfigurable, non-volatile neuromorphic photovoltaics – Nature Nanotechnology

Source Node: 2778865
  • Sze, V., Chen, Y.-H., Emer, J., Suleiman, A. & Zhang, Z. Hardware for machine learning: challenges and opportunities. In 2017 IEEE Custom Integrated Circuits Conference (CICC) 179–186 (IEEE, 2017).

  • Zhou, F. C. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  • Gollisch, T. & Meister, M. Even smarter than scientists believed: neural computations in circuits of the retina. Neuron 65, 150–164 (2010).

    Article  CAS  Google Scholar 

  • Kyuma, K. et al. Artificial retinas—fast, versatile image processors. Nature 372, 197–198 (1994).

    Article  CAS  Google Scholar 

  • Kolb, H. How the retina works—much of the construction of an image takes place in the retina itself through the use of specialized neural circuits. Am. Scientist 91, 28–35 (2003).

    Article  Google Scholar 

  • Funatsu, E. et al. An artificial retina chip with current-mode focal plane image processing functions. IEEE Trans. Electron Devices 44, 1777–1782 (1997).

    Article  Google Scholar 

  • Nitta, Y., Ohta, J., Tai, S. & Kyuma, K. Variable-sensitivity photodetector that uses a metal-semiconductor-metal structure for optical neural networks. Opt. Lett. 16, 611–613 (1991).

    Article  CAS  Google Scholar 

  • Jang, H. et al. In-sensor optoelectronic computing using electrostatically doped silicon. Nat. Electron. 5, 519–525 (2022).

    Article  Google Scholar 

  • Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  CAS  Google Scholar 

  • Chen, S., Lou, Z., Chen, D. & Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30, 1705400 (2018).

    Article  Google Scholar 

  • Cui, B. Y. et al. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nat. Commun. 13, 1707 (2022).

    Article  CAS  Google Scholar 

  • Sun, L. F. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Article  CAS  Google Scholar 

  • Zhou, F. C. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  CAS  Google Scholar 

  • Ahmed, T. et al. Optically stimulated artificial synapse based on layered black phosphorus. Small 15, 1900966 (2019).

    Article  Google Scholar 

  • Fu, X. et al. Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing. Light.: Sci. Appl. 12, 39 (2023).

    Article  CAS  Google Scholar 

  • Lee, S. H., Peng, R. M., Wu, C. M. & Li, M. Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).

    Article  CAS  Google Scholar 

  • Liao, F. Y. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  • Liu, K. Q. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article  CAS  Google Scholar 

  • Pi, L. J. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).

    Article  CAS  Google Scholar 

  • Seo, S. H. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    Article  Google Scholar 

  • Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  • Yu, J. R. et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Z. H. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  Google Scholar 

  • Lien, D.-H. et al. Engineering light outcoupling in 2D materials. Nano Lett. 15, 1356–1361 (2015).

    Article  CAS  Google Scholar 

  • Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  • Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  CAS  Google Scholar 

  • Khan, M. A. et al. The non-volatile electrostatic doping effect in MoTe2 field-effect transistors controlled by hexagonal boron nitride and a metal gate. Sci. Rep. 12, 12085 (2022).

    Article  CAS  Google Scholar 

  • Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    Article  CAS  Google Scholar 

  • Zhu, X. J., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019).

    Article  CAS  Google Scholar 

  • Lee, H. S. et al. MoS2 nanosheets for top‐gate nonvolatile memory transistor channel. Small 8, 3111–3115 (2012).

    Article  CAS  Google Scholar 

  • Chen, H. W. et al. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021).

    Article  CAS  Google Scholar 

  • Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).

    Article  CAS  Google Scholar 

  • Tong, L. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 (2021).

    Article  CAS  Google Scholar 

  • Miao, J. S. et al. Heterojunction tunnel triodes based on two-dimensional metal selenide and three-dimensional silicon. Nat. Electron. 5, 744–751 (2022).

    Article  CAS  Google Scholar 

  • Choi, C. S. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Article  Google Scholar 

  • Cao, R. R. et al. Compact artificial neuron based on anti-ferroelectric transistor. Nat. Commun. 13, 7018 (2022).

    Article  CAS  Google Scholar 

  • Kim, S. H. et al. Effects of plasma treatment on surface properties of ultrathin layered MoS2. 2D Mater. 3, 035002 (2016).

    Article  Google Scholar 

  • Kang, N., Paudel, H. P., Leuenberger, M. N., Tetard, L. & Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 118, 21258–21263 (2014).

    Article  CAS  Google Scholar 

  • Duy, L., Rawal, T. B. & Rahman, T. S. Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J. Phys. Chem. C 118, 5346–5351 (2014).

    Article  Google Scholar 

  • Komsa, H.-P., Kurasch, S., Lehtinen, O., Kaiser, U. & Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: evolution of atomic structure under electron irradiation. Phys. Rev. B 88, 035301 (2013).

    Article  Google Scholar 

  • Li, D. et al. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 12, 9240–9252 (2018).

    Article  CAS  Google Scholar 

  • Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  Google Scholar 

  • Chen, Q. et al. Ultralong 1D vacancy channels for rapid atomic migration during 2D void formation in monolayer MoS2. ACS Nano 12, 7721–7730 (2018).

    Article  CAS  Google Scholar 

  • Zhou, X. Y., Koltun, V. & Krähenbühl, P. Tracking objects as points. In 16th European Conference on Computer Vision (ECCV) 474–490 (Springer, 2020).

  • Redmon, J., Divvala, S., Girshick, R. & Farhadi, A. You only look once: unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779–788 (IEEE, 2016).

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).

    Article  Google Scholar 

  • Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology